
Leadership Trait Analysis and Threat Assessment with
Profiler Plus

Nick Levine
Ravenbrook Limited

PO Box 205
Cambridge, CB2 1AN

United Kingdom
ndl@ravenbrook.com

Michael Young
Social Science Automation, Inc

3798 Dayspring Dr.
Hilliard OH 43026

USA
michael@SocialScience.net

ABSTRACT
Profiler Plus is a general-purpose “natural language” anal-
ysis application implemented in Common Lisp. We discuss
its capabilities in the context of two points of view which
are brought together here for the first time: that of Social
Science Automation which commissioned the product and
programmed the rules which drive it; and that of Raven-
brook which, without ever wholly understanding what it did,
successfully implemented it.

Categories and Subject Descriptors
I.2.7 [Artificial Intelligence]: Natural Language Process-
ing—Text analysis; D.3.2 [Programming Languages]:
Language Classifications[Specialized application languages];
D.2.6 [Software Engineering]: Programming Environ-
ments—Interactive environments; I.5.4 [Pattern Recogni-

tion]: Applications—Text processing ; J.4 [Social and Be-

havioral Sciences]: [Sociology]

General Terms
Human Factors

Keywords
Common Lisp, Political Science

1. INTRODUCTION

1.1 Content Analysis1
Profiler Plus2 is a child of the late 1990s and of approaches

to the assessment-at-a-distance of individuals and groups
that originated in the analysis efforts of the British and
American intelligence services of World War II. These were

1Holsti, O. R. Content analysis for the social sciences and
humanities 1969. Don Mills: Addison-Wesley.
2http://socialscience.net/tech/ProfilerPlus.aspx

Permission to make digital or hard copies of all or part of this work for personalor
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.
ILC ’14 August 14 - 17 2014, Montreal, QC, Canada
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-2931-6/14/08 ...$15.00.
http://dx.doi.org/10.1145/2635648.2635657.

later influenced by advances in psychology and remain in use
today by academics and governments alike. By the mid-80s
many different approaches existed, under such diverse titles
as: operational code, image analysis, leadership trait anal-
ysis, cognitive mapping, conceptual/integrative complexity,
motivations, and more. However due to its labor-intensive
nature this work was not flourishing: in each form of con-
tent analysis, every document had to be read at least once
by a trained analyst, processed by hand according to some
set of rules, marked up (coded) – annotations in the margin!
for example +D might be used to indicate “distrust” – and
then the data analyzed and interpreted. Problems abounded
because the rules used by the human analysts were usually
poorly specified and made huge reliance on the competence
of native language users. As a result, the process was slow
and plagued with reliability problems. As a practical matter
the analysis produced was often too little, too late.

By the 1990s some efforts were being made to use comput-
ers to automate this process, but they largely relied on word
or phrase lists which did not adequately capture the desired
content and often ignored issues like negation of meaning,
relying purely on term frequency counts. Machine learning
was typically not considered, because of its relative inacces-
sibility to social scientists, the lack of transparency in how
items are coded, and the a priori need for a relatively large
and reliable training corpus.

A notable exception to this characterization was the KEDS/
TABARI system developed for event coding by Dr. Philip
Schrodt3. Unfortunately this system was tuned only for
event coding and not suitable for general-purpose social sci-
ence text analysis.

Social Science Automation (SSA) was founded in 1997
in part to meet this challenge and to provide a general-
purpose platform that could embody any and all of the ex-
isting assessment-at-a-distance coding schemes (such as that
discussed in Sect. 1.2) along with any others that might be
devised. Its efforts drew the attention of the United States
Department of Defense and, with their support, develop-
ment of Profiler Plus began in earnest in the summer of
1998.

1.2 Example – Leadership Trait Analysis
A coding scheme is a set of rules for identifying con-

structions in text that have some meaning. Initially all of
the schemes developed for Profiler Plus were for the at-a-
distance assessment of foreign leaders and groups. Here we

3http://eventdata.parusanalytics.com/

discuss one aspect of one such scheme: “Leadership Trait
Analysis”4.
Leaders who are high in distrust of others are given to

being suspicious about the motives and actions of others,
particularly those who are viewed as competitors for their
positions or against their ideology or cause. These others
can do nothing right; whatever they do is easily perceived as
for ulterior motives and designs. In its extreme, distrust of
others becomes paranoia in which there is a well-developed
rationale for being suspicious of certain individuals, groups,
or countries. Distrust of others often makes leaders not rely
on others but do things on their own in order to prevent
any sabotage of what they want done. Loyalty becomes a
sine qua non of working with the leader and participating
in policy making. And such leaders often shuffle their advis-
ers around, making sure that none of them acquires a large
enough power base to challenge the leader’s authority. To
some extent distrust of others may grow out of a zero-sum
view of the world – when someone wins, someone else loses.
The desire not to lose makes the leader question and as-
sess others’ motives. Leaders who distrust others tend to
be hypersensitive to criticism – often seeing criticism where
others would not – and they are vigilant, always on the look-
out for a challenge to their authority or self. Some wariness
of others’ motives may be an occupational hazard of politi-
cal leaders. But leaders low in distrust of others tend to put
it into perspective. Trust and distrust are more likely to be
based on past experience with the people involved and on
the nature of the current situation. A person is distrusted
based on more realistic cues and not in a blanket fashion.
So we say that distrust of others involves a general feeling
of doubt, uneasiness, misgiving, and wariness about others
– an inclination to suspect their motives and actions.
Although the conceptual discussion of distrust above is

quite rich, the coding instructions are rather limited. Be-
yond a list of 10 nouns to always code (in other words,
each time one of these nouns appears, that instance should
be recorded), directions to code references to specific per-
sons, an admonishment to only code pronouns when the an-
tecedent was unambiguous, and five concrete examples, the
following paragraph comprised the entirety of the rule set
for coding this sentiment.
“Distrust should be found in text by identifying nouns

and noun phrases referring to persons other than the author
and to groups other than those with whom the author identi-
fies. Does the author distrust, doubt, have misgivings about,
feel uneasy about, or feel wary about what these persons or
groups are doing? Does the author show concern about what
these persons or groups are doing and perceive such actions
to be harmful, wrong, or detrimental to him/herself, an ally
or friend, or a cause important to the author? If either of
these conditions is present, the noun or noun phrase is coded
as indicating distrust. An author’s score on this trait is the
percentage of times in an interview response that he or she
exhibits distrust toward other groups or persons; the overall
score is the average of these percentages across the interview
responses being studied.”
Such levels of abstraction and reliance on human compe-

tence are typical of the instructions for hand-coded content
analytic schemes in the social sciences. Unfortunately they

4Much of this discussion borrows from Assessing Leadership
Style: a Trait Analysis by Margaret G. Hermann http://
socialscience.net/docs/LTA.pdf

provide very little guidance for the construction of an au-
tomated scheme, and this is compounded by the absence of
a large corpus of reliable hand coded text against which to
test it. The challenge for SSA’s scheme developers there-
fore was to develop rules that the originators of the distrust
measure could understand and approve, and that produced
results congruent to those of trained hand coders. To add to
the fun, both the scheme originator and hand-coders could
be inconsistent, and had to be coaxed to articulate how a
particular construction could be further clarified, without re-
sorting to personal perceptions of the relationship between
the author and the actor referred to in the text.

1.3 The Profiler Port
SSA needed “ordinary” people to be able to use Profiler

Plus and they needed to build it quickly. Despite their pos-
itive experience with lisp on prior projects and admiration
for the language, it was not initially selected for the imple-
mentation because of a perceived difficulty of creating the re-
quired GUI in either Franz Allegro Lisp or LispWorks. SSA
selected Visual Basic 6 to take advantage of its GUI compo-
nents and MS Access database support and they sacrificed
expected performance for the ability of a“hobbyist”coder to
put together quickly an engine and GUI that worked, even if
subsequently it meant regularly going home for the weekend
while Profiler Plus slowly chewed through its texts.

Although performance was always an issue, by Version 4
(October 2003), other defects were driving SSA to look at
out-sourcing a rewrite of Profiler Plus. An initial review
listed several problems:

• it did not operate correctly in managed multi-user Win-
dows XP environments, for instance storing each user’s
files, preferences etc. in the appropriate places;

• on long data runs it issued “low system memory”mes-
sages: Profiler Plus 4 (or Microsoft’s “Jet” database
engine) had a memory leak of some sort;

• it had a tendency to create output databases larger
than 2GB, thereby causing further problems for Jet;

• there were no error handlers: a broken rule could abort
a whole data run;

• it couldn’t run more than one coding scheme sequen-
tially on the same set of documents;

• it couldn’t combine rules from different coding schemes,
and so abetted large-scale duplication between schemes
and high maintainance costs;

• it wrote results into the same Access database in which
the coding schemes were stored;

• it did not run on Linux or OS X.

Based on SSA’s successful work with Ravenbrook on other
projects, and prior experience with content analysis using
lisp language features for pattern matching and map/reduce
operations, SSA asked Ravenbrook to take on the port and
specified lisp as the development language. The project was
commissioned at a meeting the day after the New York In-
ternational Lisp Conference in October 2003; a prototype
was ready five weeks later and a full GUI version the fol-
lowing March; by May 2004 the third-party Java “part of
speech” tagger had been abandoned for a native one.

Version 0.1 (in other words: the act of näıvely rewriting
the code in Common Lisp) was ten times faster than the
VB implementation, and Profiler has continued to eke out
performance improvements ever since.5 When it comes to
quantifying this, we note that performance varies consider-
ably with the quality and size of the coding scheme, and that
schemes have evolved and expanded in parallel to Profiler;
in short it’s not straightforward to produce performance fig-
ures. However as a rough guide to processing speeds: we
used the“Leadership Trait Analysis”scheme discussed above
to process 36 documents on a Win7 64bit i5 3.1GHz with
3.9GB usable RAM. 3487 sentences were processed in 42.4
seconds: 12.15ms per sentence.
Profiler Plus is now a mature closed-source application

whose source comprises about 30k lines of Common Lisp
and LispWorks extensions (primarily to drive the GUI, via
its “CAPI” cross-platform toolkit). It no longer degrades
over long runs or with many rules loaded; it no longer uses
Access to store either its data or its results; it never crashes;
it copes well with poor data; it can be driven either from its
GUI, or from batch control files specified on the command
line, or over a socket interface; its specification has been
enlarged over 30 different product versions; and early in 2014
it was ported with minimal effort to both Linux and OS X.

2. THE LANGUAGE OF SCHEMES

2.1 The Coding Engine
A coding run in Profiler Plus typically involves applying

one or more schemes to several text documents. Both the
loading of schemes and the parsing of raw text (for word
and sentence boundaries, punctuation, and the like) are suf-
ficiently costly that it’s worth caching the results. Beyond
that, the main point of interest is Profiler’s coding engine:
a device for applying a single scheme to one document.
The document is represented by a sequence of sentences,

and for the most part these are processed in isolation.6 Each
sentence is processed into a series of doubly-linked CLOS
instances, each corresponding to one token in the sentence:
usually a word7 or punctuation feature. Tokens have over
twenty slots which are directly visible to the coding scheme.
These slots include the word’s original (that is, unmodified)
text, its current text, its part-of-speech and – stored in the
prosaically named slot1, ..., slot13 – a bunch of temporary
values.
Essentially, the scheme interrogates slot values and then

either modifies them, or rearranges the sentence, or outputs
results. The scheme consists of several8 tables along with an
XML control file which specifies an order in which to apply

5With the release of LispWorks 5 in July 2006, LispWorks
for Windows (and Linux) inherited the architecture of the
other 32-bit LispWorks implementations, delivering 30-bit
fixnums (up from 24) and a much improved garbage collec-
tor; processing speeds improved by about 20% overnight.
6It is however sometimes necessary to peek back from one
sentence to its predecessors. Pronoun disambiguation –
making sense for instance of "Marc has arranged a great
conference. He worked very hard." – is a typical reason
for doing so.
7Because languages like traditional Chinese are written
without spaces between words, in some coding schemes the
tokens will initially represent single characters.
8Three dozen in the English part-of-speech tagger, for ex-
ample.

them and settings for run-time configurations. The scheme
can also:

• include other schemes for recursive processing (for in-
stance, this feature is regularly employed to invoke
the part-of-speech tagger near the beginning of a more
complex scheme); and

• use named variants, which selectively comment various
tables in or out using a lisp-like #+ / #- syntax.

The tables represent stages in the coding scheme’s work.
The coding engine applies each table, in order, to every sen-
tence of the document.

Unlike the majority of “natural language processing” soft-
ware, the approach of Profiler is rule-based rather than Bayes-
ian; the rules use forward chaining. A typical table might
consist of anything from one to over a thousand rules. Each
rule has an anchor, a pattern made up of one or more pred-

icates, and a reduction comprising one or more actions; the
rule won’t be activated on a token unless one of its slots
exactly matches (unicode-string-equal) the anchor; the
predicates are then tested and if they return “true” then the
actions are applied.

Here’s a simplified example:

Anchor: well

Pattern: (token: 0 text: well)

(token: 1 text: run)

Reduction: (token: 0 pos= adverb)

The interpretation of this rule is: if any of the slots of this
token are (unicode-string-equal to) the string "well" we
can try the predicate; if more specifically the text slots of
the current token and the one following it have the string
values "well" and "run" respectively, then perform the fol-
lowing action: set the pos slot of the current token to the
string "adverb".

Internally each table is stored as a unicode-string-equal
hash-table which maps anchors to lists of rules; the coding
engine loops across each token’s slots looking for matches.
Occasionally, rules are written whose patterns are designed
to be tested against every token in the sentence; in effect a
“universal anchor”(we use the string "%every%") is required.

Anchor: %every%

Pattern: (not token: 0 slot10: %null%)

Reduction: (no-repeat (clear 0 slot10))

An elegant and efficient solution to this requirement is to
create a special hash-table in which lookups necessarily al-
ways succeed:

(make-hash-table :test ’true

:hash-function (constantly 0))

and insert into this one entry – the choice of key doesn’t
matter! – mapping to the rules in question.

In theory we keep matching a table against each sentence
until all possible patterns have been matched and acted
upon; in practice, managing this requires a little subtlety.
If a pattern returns “false”, or if the reduction doesn’t mod-
ify anything – because all it does is generate output – then
processing of the current table continues from the next to-
ken in the sentence. However if anything has changed (e.g.
a slot value has been rewritten) then the engine backs up

two tokens before resuming its work; this is done to catch
any patterns which – as a result of the change – will now
match on neighboring tokens. Unfortunately this practice
carries with it the risk of looping, sometimes by a single pat-
tern, in more complex cases involving the interaction of sev-
eral. (For example, consider three rules, the first of which
matches "alpha" in slot1 and converts it to "beta", the
second rewrites "beta" as "gamma", and the third "gamma"

as "alpha"; and none of these rules perform any secondary
tests.)
If looping is detected (50 changes, say, without making

any headway through the sentence), then we assume that
no further progress can ever be made and we move forward
to the next token regardless. When we get to the end of
the sentence, if changes have occurred anywhere along the
way, then processing reverts to the beginning of the sen-
tence. This is done to catch patterns which now match as a
result of “non-local” changes, and is another potential cause
of looping. So each time the sentence is repeated, the loop-
ing sensitivity is halved and when this value gets too small
Profiler issues a "Non-local loop" warning, and we take the
current table on to the next sentence. Looping is sometimes
a useful construct and sometimes less so; originally scheme
developers controlled it by writing increasingly subtle pred-
icates to spot it, but in more recent years a no-repeat ac-
tion has been introduced to make the process much more
straightfoward. Unfortunately no-repeat encouraged lazy
rule construction and, along with the "%every%" anchor, is
now mandated to be used only when absolutely necessary.
The source file for each table is XML (which works well

with the external tool used for editing the rules), but as
shown above the predicates and actions look a lot like S-
expressions. Indeed, the lisp reader is used to parse them,
albeit with a somewhat modified readtable. The trailing
colons (for instance, in text: here) and equals signs are
optional and purely stylistic: the readtable uses them as
delimiters but otherwise ignores them.

2.2 Predicates and Actions
We’ve met the predicate called token and an action with,

as it happens, the same name. There are about twenty differ-
ent predicates, and over thirty actions; we give a few further
examples below. Essentially, these operators form an em-
bedded programming language which has evolved gradually
over the last decade and whose task, as already suggested, is
to take tokens as its input, selectively update these tokens,
and occasionally output a result.
The syntax of the token predicate is

(token offset [key value]*)

If offset is a number, then 0 means the current token
(that is, the token which matched the anchor), +1 is the
following token, -1 the previous one, and so on. The key,
value pairs name slots and give values to be matched; how-
ever the special key newlabel is used to associate a symbol
with the current token, so that later predicates and actions
in this rule can refer to it by name (for example, as the
offset of another token predicate).
Token is by far the most used predicate. As a result it

has attracted both the most optimisation effort and also the
most extensions. Three examples:

• the simple use of wildcards

(token 3 lemma (any-value band generation

style cloth*))

• instead of a fixed string value, a restricted format op-
erator can be used to generate match strings on the
fly, using slot values from the current token and its
neighbors:

(token: 0 slot1 (format "(both ~a)"

(-1 slot10)))

• instead of a string value, the any-value operator can
be used to offer a choice of values, and within that the
file operator specifies that these values will be found
in a separate data file:

(token 0 text (any-value

(file "locations.txt")))

Similarly, the any-slot operator allows a match to
occur in a range of slots.

Sometimes, asking whether some slot/value combination
is to be found some exact distance away from the current
token is too specific: natural language is more fluid than
that. So within the scope variable operator, offsets are
interpreted as “no more than”. In the following example, the
lemma slot of either this token or its immediate predecessor
must be one of "north" or "south":

(variable

(token: 0 pos: punc lemma hyphen)

(token: -1 lemma (any-value north south))

(token: 1 lemma (any-value east west)

newlabel: c))

By default predicates are combined as if by and: all the
predicates in a rule must succeed. This can be overridden
with a combination of or, and and not9 predicates, each of
which takes further predicates as its arguments.

We have already met the action token which sets slot
values. Other actions which modify the sentence include:
insert which creates new tokens; delete which removes
them; split which divides one token into several smaller
ones, breaking on a given character.

By default actions are combined as if by progn: if the
predicate has succeeded then all the actions are performed,
in order. This behavior can be modified, with operators such
as when, unless, if and progn:

(when (and (not token: -1 pos: be)

(not token: -2 pos: be))

(insert destination: 0 before: yes

lemma: be pos: be tense: present))

In theory, every rule’s pattern could be left empty, and its
predicates moved into a when operator encompassing the ac-
tions. However, SSA prefers to keep the predicates logically
separate, to allow use of priority values to control rule execu-
tion order and to promote readability for scheme developers.
In addition, although when, unless, if, and progn all have
necessary uses, they feed the tendency of some “schemers”

9There is another variety of not, which behaves as a token
test whose result is then negated.

to write fewer, complex rules rather than more, simple rules.
SSA prefers more but simpler rules for ease of maintenance.
Among the actions which generate output are csv and

xml. These, along with the token and insert actions, have
access to the format operator mentioned above. In these
contexts (but particularly for output) the strings which
format builds might also incorporate values from the cur-
rent environment, such as the date on which the source text
was generated, the word count or full text of the current
sentence, or even the pattern being matched.
If the work of a predicate or action is straightforward,

then so by and large is its definition. For example, in the
best spirit of lisp interpreters, the Profiler sources read:

(defpredicate or (token match)

(dolist (submatch match)

(when (apply-predicate token submatch)

(return-from or

t)))

nil)

(defaction when (token match)

(let ((condition (first match))

(rest (rest match)))

(when (apply-predicate token condition)

(execute-progn token rest))))

The defining macros defpredicate and defaction are
a thin gloss around eql methods on the generic functions
execute-predicate and execute-action; their main pur-
pose is to assist the LispWorks editor to locate the forms
when given a predicate’s or action’s name (so the developer
can look for the definition of when, for example).
Finally, here’s a real rule, lifted directly from one of the

coding schemes. As a piece of computer code, it’s neither
beautiful nor particularly high-level; but the abstractions it
uses are right for the people who have to maintain it.

<Rule Anchor="conj" PatternNumber="76">

<Pattern>

(variable

(token: 0 pos= noun slot1= dt)

(token: 1 pos= verb newlabel= v)

(not token: 1 lemma (any-value arrive snore sneeze

sit die come lie))

(token: 2 pos= conj newlabel= a)

(not token: a conjunction: or

slot9= clause slot9= sentence)

(token: 3 pos= verb newlabel= b)

(variable-offset from: b distance: 100

pos= punc newlabel= p)

(not-any start: b end: p pos= conj))

</Pattern>

<Reduction>

(copy start: 0 destination: a)

(set s-token: 1 s-slot: modifier

d-token: b d-slot: modifier)

(set s-token: 1 s-slot: truthvalue

d-token: b d-slot: truthvalue)

(token: a slot9= clause)

(copy start: b end: p destination: v exclude= yes)

</Reduction>

</Rule>

If this rule is applied to "The man laughed and cried

after the maid sang.", it will convert the sentence into

"The man laughed after the maid sang and the man

cried after the maid sang.". The "and" will be marked
as a “clause boundary”: a complete clause now exists on
either side.

2.3 Implementation
Profiler’s rule language is run interpreted. A typical large

scheme might consist of several thousand rules, many of
which aren’t touched during any given coding run. Just
reading and parsing all these rules takes a significant time.
Further, considering even those rules whose predicate does
get invoked, most predicates fail and so most actions are
never fired. Finally, most predicates in a scheme will be
calls to token, often in its most straightforward form. Bear-
ing these observations and the results of some simple code
profiling in mind:

• scheme source files (XML) are parsed and then stored
back to disk in a simple binary format which in par-
ticular precedes each rule’s strings (anchor, predicate,
action) by their lengths – this makes subsequent load-
ing of the scheme significantly faster;

• predicates and actions are held in memory as unparsed
strings until they are invoked, whereupon they are
parsed into and retained as S-expressions;

• some predicates are then rewritten, in terms of simpler
operators which will run faster;

• most effort went into optimising token; and

• in very simple cases, token can be replaced by a com-
piled closure:

(defun optimized-token (token slots-and-values)

(loop for (slot . value) in slots-and-values

always

(unicode-string-equal (funcall slot

token)

value)))

Note that for each slot visible to the coding scheme, there
is a reader with the same name. Invoking (with suitable
guards around the funcall) standard readers is noticeably
faster than calls to slot-value.

(defclass token ()

((text :accessor token-text :reader text)

...))

2.4 GeoNames
Profiler has the ability to specify a number of “special

tables” in a scheme’s configuration. These are denoted by
keywords and include :hold which means“don’t process any
sentence beyond this point until you’ve processed all sen-
tences before this point”and is useful for pronoun and entity
disambiguation; :split-words which splits every token into
its constituent characters; and :geonames.

GeoNames10 is a free-of-charge database which contains
details of over eight million placenames, in the form of tab-
separated strings. It’s sometimes useful for a scheme to
know whether it’s potentially looking at a placename and
if so to access other details about the place, such as which

10http://www.geonames.org/

country it might be in; the :geonames special table walks
the sentence looking for potential matches. We don’t want
to encounter any noticeable delays while doing this lookup;
and we’d rather not get tied back into SQL as a means of
performing it. So GeoNames data files are walked once (the
first time they’re loaded) and each converted into two binary
files: a dictionary and an index.
The dictionary is large and is never loaded in its entirety;

the index is small and can be reloaded cheaply in future in-
vocations of Profiler. Doing so creates a hash-table whose
keys are the strings which start GeoName phrases, such as
"South" or "Cambridge". Values in this table are either a
number (an index which can be handed to file-position

for random access into the dictionary file), or a data struc-
ture if this string has been visited before. Some complexity
arises because a phrase such as "Cambridge"might be a com-
plete placename, or the beginning of over a hundred of longer
phrases, such as the "Cambridge Community Resources

Building" (in Nevada). Profiler returns the longest pos-
sible matches – and there might be several – and inserts
them into the sentence for further consideration.
Any scheme which incorporates :geonames must beware

of false positives! For example, while procesing the phrase
"Vladimir Putin phoned President Barack Obama on Fri-

day", we learn that "President" is the name of several ho-
tels (there’s one in Andorra); there are nine places called
"Obama" in Japan, and there’s a "Friday" somewhere in
Texas. In general, most short English words turn out to be a
placename somewhere or the other. For this reason, two con-
trol files were added to :geonames processing: "stop-words.
txt" and "stop-pattern.txt". Any token found in stop-

words is ignored by :geonames, along with those that fail
the test in stop-pattern which currently reads:

(or

(token: 0 slot8 (any-value international-region

country))

(not (token: 0 slot11: GeoName-candidate)))

2.5 The Lisp
Down at the language level, two aspects of the implemen-

tation are worth mentioning. The first is string processing,
and the morals for the modern programmer are simple: don’t
even think about using 8-bit strings; and don’t even think
about string I/O that isn’t UTF-8 safe. Below the hood
there was plenty of work to do.

• The implementation shadows cl:make-string and cl:

with-output-to-string, issuing compile-time warn-
ings unless either :element-type or :believed-safe

is set.

• It shadows cl:with-open-file with a macro which
takes two additional keywords: :skip-bom for control-
ling the handling of byte-order marks, and :explain

for specifying what should happen when an input file
fails to conform to its expected external-format (UTF-
8, typically). The LW extension hcl:file-string is
also shadowed, by a function which understands :skip-
bom.

• It hacks into LispWorks’ file-encoding algorithm, to
allow a run-time choice of default encoding between
:latin-1 and ’(win32:code-page :id 1252). This
feature made a lot of sense back in 2004 but it doesn’t

any longer: although this hack was never taken out the
only format supported today is UTF-8. If source doc-
uments don’t conform to that then Profiler provides
the tools to convert them.

Then we come to Profiler’s heavy use of macros and clo-
sures. It’s hard to come up with non-trivial but succint
examples, so we satisfy ourselves with brief descriptions of
a few of the macros which Profiler uses.

with-data-file is a wrapper around with-open-file for
reading text data files: its body is a loop for process-
ing one line of text. Parameters include control over
whitespace stripping, forms to run even when a line is
#-commented out, and the name of an explicit block

(for moving onto the next line):

(with-data-file (line ifile)

(:block continue :strip t

:always ((incf count)))

...)

(with-progress ((funvar) &body body) binds funvar to
a closure which controls a progress bar and the text
above it, in the Profiler GUI. This closure can be passed
a number (to move the bar), a string, or a keyword such
as :halt to control both the coding engine and other
aspects of the GUI. This macro / closure combination
appears 75 times in Profiler source code – a powerful
tool which has required zero maintenance in over ten
years.

with-suspended-richedit-undo appears just once. Some-
thing had to be done to prevent the Windows rich-text
widget from building a character-by-character undo
list out of syntax-coloring changes. The ugliness (in-
volving, unfortunately, 100 lines of C++) is elsewhere.

writing-with-caution is a wrapper around with-open-

file with implicit :direction :output. It ensures
cleanup (logging, and removal of potentially corrupt or
part-written files) if any error occurs within its scope.

2.6 Parallelism
By 2006, Profiler Plus was in use for assessment-at-distance

in a number of government and research settings, and the
performance gains provided by the port to lisp were more
than adequate for those tasks. However, new large scale
projects loomed on the horizon, including:

• a project that would require repeated coding of a 10
year corpus of news stories,

• a dynamic web-based tool for media monitoring to pro-
vide analysts with near real-time access to data from
millions of Arabic language media documents directly
from the source without the need for, nor the inherent
risk of, intermediary processes, screenings, and trans-
lations, and

• national brand monitoring11 which would require daily
processing of up to 25 million news articles in several
languages.

11http://www.eastwestcoms.com/global.htm

To meet the scale of the processing challenges in these pro-
duction settings, SSA considered parallelism on multi-core
machines. Various options were considered:

• running different schemes in parallel (this comes for
free with Profiler’s socket interface, but we still need
some form of controller to spot which threads have
completed and are ready for new tasks), or

• different documents within a given scheme, or

• different sentences within a given document (pronoun
disambiguation notwithstanding).

However, given the availability of very cheap single core
Windows boxes, SSA decided to simply add boxes to a bank
of dedicated hardware and use an external controller to man-
age many single-core instances of Profiler Plus running batch
jobs via its socket interface. SSA wrote the controller in Vi-
sual Basic – a tool with which they had experience – leaving
Ravenbrook to focus on the core engine and GUI in lisp. Af-
ter the recent port to Linux, cloud-based scaling has become
an attractive and cost-effective alternative to maintaining
racks of individual machines.

3. PROGRAMMER AIDS

3.1 For the Lisp Developer
As the application has evolved over the years, so have the

debugging tools used to fix and extend it. One of the most
useful of these has been present since the very beginning:
the global environment.
The coding engine is controlled by an instance of the

class global-environment: this object points to the sen-
tences which comprise the document, the coding scheme’s
tables and their running order, configuration values, dic-
tionaries, the GeoNames index, results, logs, the progress
function, and 20 other global values pertinent to the run.
The variable *global-environment* points to this object;
at run time the only use of this variable is to scavenge dic-
tionaries and schemes from previous runs when constructing
the next global-environment. For all other use, the global-
environment is passed around as a function parameter (and
also, for code clarity, often returned as a function’s result);
also tokens point back to the global-environment. In short,
the application routinely accesses this object without refer-
ence to a special variable.
However as a debugging aid and in combination with stan-

dard lisp development tools – in particular the debugger, the
inspector and the inestimably useful code stepper – *global-
environment* is indispensable: it gives the developer imme-
diate access to every aspect of the coding process.
Another feature present since the beginning is the macro

handling-unexpected-errors, which is wrapped around ev-
ery execution and GUI thread. This establishes a handler-

bind for warning and serious-condition, and ensures: ap-
propriate abort and if possible continue restarts; context-
specific logging with full backtraces as appropriate, via CL-
LOG12, to file and (with less detail) to a logging window;
and a fault recovery strategy which is configurable for dif-
ferent users:

12http://www.nicklevine.org/cl-log/

• During a production run, the best thing to do with
errors (up to some configurable maximum) is to log
them and continue the run: if a later analysis reveals
significant problems with the coding scheme then the
run can be repeated.

• When schemers hit an error, either they can tell straight
away what the problem was or they’re going to have
to ask someone else for help: either way their best
strategy is to halt the run.

• No end user should ever encounter the lisp debugger
(let alone the Windows console, or worse still a van-
ished application); but when lisp developers hit an er-
ror, they want to be offered the debugger.

It’s worth mentioning at this point that there are two dif-
ferent “builds” for Profiler Plus: one for the developer which
offers the full LispWorks IDE, whereas that for schemers and
end users is a royalty-free application from which the IDE
is absent. The two executeables are essentially identical:
apart from the obvious, the only real difference is that the
development version performs a load-system at startup, to
ensure that its sources are up-to-date.

Both builds load precompiled patches13 at startup. The
process of interpreting a user’s backtrace, reproducing the
problem locally and then generating a patch is lightweight,
often taking little more than an hour from beginning to end,
and has proved a highly effective means of maintaining the
application in between product releases.

3.2 For the Coding Scheme Developer
It took some time for either party to realise that the coding

schemes were computer programs and therefore the schemers
were computer programmers, to whom all the issues sur-
rounding software development applied. One consequence
of this realisation was the introduction of more careful cura-
tion for the different versions of each scheme; and out of this
came a number of features in Profiler to support versioning
in schemes. In particular it’s worth mentioning compressed

schemes: single files (.zip under the hood, and managed by
the CL-ZIP library14) distinguished by a version number as
well as the scheme name.

Profiler Plus also supports a number of debugging aids
aimed specifically at the schemer. Logging is the first line
of defense. In addition to the configurable logging levels
provided by CL-LOG,

• there’s a setting which (in return for slowing coding
runs down by about 20%) automatically generates a
report showing which rules were responsible for loops,
warnings and errors, and annotates these conditions in
the application’s log window with additional detail to
make debugging them easier;

• another setting, in exchange for a 5% performance hit,
generates statistics files showing which rules did or did
not fire;

• within the scope of the debug predicate, whose body
is an implicit and, (and provided yet another runtime

13As described in http://www.nicklevine.org/play/
patching-made-easy.html. Throughout Profiler’s 86
releases to date, some 250 patches have been issued.

14http://common-lisp.net/project/zip/

setting is enabled) all predicates log their progress in
greater detail;

Here’s a short sample extract from an “execution statis-
tics” report. Each rule is identified by a “PatternNumber”,
and the first few characters of its pattern and reduction.

GB01PreliminaryCleanup

======================

None of the patterns in this table fired

GB02BadLexicon

==============

The following 1 pattern fired 2 times

5577 capitulatio... (token: 0 lemma: capitu...

(no-repeat)(token: 0 sl...

The following 16 patterns fired 1 time

3252 regret (token: 0 lemma: regret...

(no-repeat)(token: 0 sl...

3873 tension (token: 0 lemma: tensio...

(no-repeat)(token: 0 sl...

814 crisis (token: 0 lemma: crisis...

(no-repeat)(token: 0 sl...

(etc)

The introduction of “condition summary” and “execution
statistics” reports has eliminated the need to post-process
the less specialised logs, and so saved time and effort for the
schemers.
Two other invaluable tools for the schemer are the tracer

and the stepper. Both are configured on a per-table basis.
The tracer writes a log entry – in much greater detail than
the “statistics” summary – each time a rule fires. It gener-
ates a lot of output; here’s a short log extract. Each rule
is described by its “PatternNumber” and the names of the
actions it invoked; and then the token which matched the
rule’s anchor is identified. Note how table DenominalVerbs

is repeated over the whole sentence, as described in the dis-
cussion of looping above.

Reducing sentence #5 with table DenominalVerbs

DenominalVerbs 4 when,when,when,token Token #15

DenominalVerbs 4 when,when,when,token Token #23

Reductions limit reduced

Reducing sentence #5 with table DenominalVerbs

Reducing sentence #5 with included table GoodBad

Reducing sentence #5 with table PreliminaryCleanup

PreliminaryCleanup 24 no-repeat Token #4

PreliminaryCleanup 28 no-repeat,token Token #4

...

The Stepping Tool (Fig. 1) allows the the scheme devel-
oper to halt the computation at desired points, examine the
values in each slot, and – using the “Back” button – flick be-
tween two stages to get a quick visual comparison. (This tool
is also useful for lisp developers, as it gives control over when
to set breakpoints in often-invoked code and start stepping
through the lisp itself.)
There are about 30 settings which control how the cod-

ing engine works: not just the error handling policy and

control over logging already mentioned but: choice of lan-
guage model, tokenisation policy, the Treatment Of Succes-
sively Capitalised Words, interpretation of ambiguous date
formats, looping detection sensitivity, and so on. Settings
can be changed via an Options Tool in the Profiler Plus GUI,
in batch control files:

<ppb>

<schemes>

job003718/master,,

</schemes>

<documents>

/home/nick/Profiler/docs/test.csv

</documents>

<columns>

<column type="pass-through">userid

</column>

<column type="coding">comments

</column>

</columns>

<options>

:execution-statistics t

:rules-case-fold t

:unknown-tag-error :pass

</options>

</ppb>

or by an <options> tag in an individual scheme’s XML con-
trol file.

In addition to the log window, stepping tool and options
dialog already mentioned, the Profiler GUI provides a“Code
Documents”pane which allows the schemer to select schemes
and documents; when they activate a run each scheme will
be applied to every document. Schemers can mark up, view
(with syntax-coloring for the markup), convert into UTF-
8 and validate their documents; they can view and modify
the overall structure of coding schemes; they can generate
and test out simple batch files. Only the editing of rules is
elsewhere; it’s surprising that it took so long for anyone to
identify this GUI as a programming environment.

4. ALTERNATIVE APPROACHES
SSA chose to approach the problem of slow and unreli-

able human content analysis by implementing a rule-based
general-purpose text coding engine and using it for fully-
automated text-coding. In retrospect, was this a good choice?
We consider here some alternative methods:

• continuing with hand-coding;

• continuing with hand-coding, but distributing the work-
load15;

• computer assisted coding using something like QDA

Miner16;

• computer assisted coding with human verification17;

• using a Bayesian/machine learning approach to auto-
mated coding.

15http://www.umass.edu/qdap/index.html
16http://provalisresearch.com/products/
qualitative-data-analysis-software/freeware/

17http://www.umass.edu/qdap/IJMRA.pdf

Figure 1: The Stepping tool, showing a sentence part-way through its part-of-speech analysis.

Hand coding, computer assisted, distributed or oth-
erwise, with or without verification.There are services
which offer expert human coding and evaluation of coding,
such as the the Qualitative Data Analysis Program at the
University of Amherst. SSA uses similar processes to de-
velop test suites that are used to gauge the accuracy of the
automated coding schemes. However, many of SSA’s most
important projects require near real-time analysis of large
volumes of continually updated text feeds. Scaling human
coding efforts to achieve this requirement is simply cost pro-
hibitive. In addition, the scope of analysis available per unit
of cost is much greater with automated coding. For example,
in 1983, the quite respectable volume of text required for an
at-a-distance assessment of an individual was 50 100-word
text samples (5,000 words total) and the limiting factor in
the process was the time and cost for each of the seven traits
to be coded. Today researchers using Profiler Plus routinely
examine hundreds of thousands of words spoken or written
by a single assessment subject; the availability of documents
has become the limiting factor.

Bayesian machine learning automated coding
approaches.For better or worse, the original designer of
Profiler Plus was reasonably well trained in pattern-matching
and averse to statistical approaches to text coding that start
by discarding “information that will likely be unhelpful, an-
cillary, or too complex for use in a statistical model.”18

These approaches may be natural to anyone who views text
as “unstructured” data or who is trained in statistical ap-
proaches to data analysis. However, in statistical approaches
a highly structured, albeit complex, form of symbolic com-
munication (text) is de-structured to make it amenable to
statistical analysis and much is lost in this process. Rule-

18Grimmer, J., & Stewart, B. M. (2013). Text as data: The
promise and pitfalls of automatic content analysis methods
for political texts. Political Analysis, 21(3), 267-297.

based approaches also offered a more accessible and trans-
parent coding process in which all the steps leading to any
particular coding can be examined. As Profiler Plus was in-
tended to be a platform used by the“average”social scientist
for the development of coding schemes, this transparency
was crucial. Last but not least, no fully annotated corpuses
existed for any of the target assessment coding schemes.
When hand-coded texts were available, the annotation of-
ten consisted of notes in the margin indicating one or more
codes that applied to the paragraph (or in the best cases
to a single sentence). It may be the case that a statisti-
cal approach would perform just as well on any of the text
coding tasks Profiler Plus takes on. However, SSA has not
yet run up against any limitations of Profiler Plus – or the
coding scheme language – that Ravenbrook has been unable
to remedy.

One external measure of the appropriateness of the ap-
proach is the adoption of Profiler Plus in the social sci-
ence research community. In the mid 1990s, perhaps half a
dozen researchers used “Leadership Trait Analysis” (LTA).
Today more than 300 researchers are using LTA on Profiler
Plus through a program administered by Syracuse Univer-
sity and, in the last year, 166 researchers registered to use
one or more of the wider range of coding schemes now avail-
able on profilerplus.org.

Profiler Plus running a well-constructed coding scheme is
not as good as a human expert, but is more reliable and
much, much faster. Profiler Plus running a well-constructed
coding scheme is better than the average well-trained human
coder. Profiler Plus does not learn, but it can be taught.

5. COMMERCIAL APPLICATION –
THREAT TRIAGE

In 1999, one of the FBI’s problems was the large num-
ber of disturbing or threatening communications they were
asked to analyze and assess for risk. Unfortunately they

lacked a reliable method for distinguishing urgent cases of
imminent harm from the much more numerous cases where
the threatener was simply blowing off steam or the com-
munication was just a malicious hoax. At the request of
then Supervisory Special Agent Sharon Smith at the FBI’s
elite Behavioral Science Unit, SSA provided Profiler Plus
and a number of coding schemes to assist her in evaluating
the numerous competing and often contradictory methods
used for the assessment of threatening communications. By
2006, the now Dr. Smith’s research had yielded a practical
result19. She developed a threat assessment method that
used a largely hand-coded content analysis system to clas-
sify threatening communications into 3 groups: low risk (in
90% of cases no further action occurs), moderate risk (in
30% of cases the threatener takes further action), and high
risk (in 67% of the cases the threatener takes further action,
up to and including murder and sexual assault). However,
although a vast improvement on previous methods of assess-
ment, this process remained labor intensive and not widely
available to the thousands of security and law enforcement
agencies in the United States; and Dr. Smith had no wish to
be on call 24/7/365 to conduct assessments. In 2011, SSA
proposed that they automate the 5 coding schemes used by
Dr. Smith that did not already run on Profiler Plus in order
to provide threat assessment via a web site available to users
around the country, day or night. Thus ThreatTriage.com

19http://forensicpsycholinguistics.com/fp/docs/
Sharon_Smith_Dissertation.pdf

was born and today users from Federal, State, and Local
governments along with military and civilian police depart-
ments and private corporations receive threat assessments
within seconds of submitting a disturbing or threatening
communication to the threat triage web site. The only
change to Profiler Plus required to meet this challenge was
an extension of the socket interface to allow texts and re-
sults to be exchanged directly between Profiler Plus and the
controller rather than being written to disk for periodic col-
lection.

6. FINAL REMARKS
What Profiler Plus does is quite sophisticated and most of

the sophistication is in its coding schemes. In social science
it has raised the bar for the acceptable minimum amount of
text that can be used to draw inferences about individuals
from 5,000 words to over 100,000 words; it has enabled social
scientists to extend the scope of their inquiries in time and
across individuals. As a Common Lisp success story whose
telling has been long overdue, we can’t claim that the project
would have failed if it had been implemented in any other
language, only that for all manner of reasons implementing
it in lisp made the work much more straightforward. And
considerably more fun.

