
Copyright © Nick Levine (http://lisp-book.org/) 2009 - 2011. Some rights reserved.
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported License.
To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/3.0/ or send a letter
to Creative Commons, 444 Castro Street, Suite 900, Mountain View, California, 94041, USA.

CHAPTER 15

Concurrency

Introduction
In this chapter we’re going to take a look at the control of multiple execution strands
within a single Lisp image. We’ll cover their creation and management, communication
between them, shared and private state, interlocks, and critical sections. The central
message is of the chapter is that Lisp implementations typically support much or all of
this at a high level, leaving you to get on with developing your application without
having to know too much about the innards of how threads work.

The terms used to describe concurrency are not consistent between Lisp implementa-
tions. Concurrency is typically implemented by multiple OS (or native) threads but
that’s not universally the case. On the other hand it’s almost certain that your Lisp
image is running within a single OS process. However in this chapter I’m going to reflect
common usage within the Lisp community and refer to:

• the use of multiple execution strands as multi-processing (abbreviated as MP)

• the objects with which MP deals as processes.

In some Lisps processes can run in parallel on separate cores—see the notes in “Con-
current Processes” on page 13 towards the end of the chapter.

The ANSI standard does not hint at any of the concepts underlying MP. Nevertheless
these days a Lisp implementation which did not support MP would be regarded as
somewhat deficient. Certainly all the Lisps discussed in this book support it. MP is
frequently mooted as a prime candidate for standardization; although that has never
happened the features discussed in this chapter can be regarded as “core” and you’d
expect to see most of them supported in some form or other by any MP system. These
forms will be recognizably similar to each other and you won’t have much trouble
adapting from one to another. Whichever Lisp you’re using, read the manual.

You should also be aware that a number of portable libraries are available which cover
much of this common ground. You’ll find these listed at:

1

Copyright © Nick Levine (http://lisp-book.org/) 2009 - 2011. Some rights reserved.
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported License.
To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/3.0/ or send a letter
to Creative Commons, 444 Castro Street, Suite 900, Mountain View, California, 94041, USA.

http://www.cliki.net/thread

The examples in this chapter make extensive use of lambda forms and in particular
closures (you’ll find these described in Chapter 6). The #. reader macro (Chapter 5) is
a convenient ally when debugging processes and appears in several examples. There’s
a short section at the end on the application of MP to AllegroCache; if you didn’t read
the last two chapters then skim it or skip it.

Sources
This chapter is an adaptation for ACL of material which I contributed a few years back
to the Common Lisp Cookbook:

http://cl-cookbook.sourceforge.net/process.html

That piece drew its examples from the LispWorks MP implementation of the time
(version 4.2) and LW users might prefer to refer to that as well. (But note that it doesn’t
mention some important features such as concurrent MP which we’ll come to later on.)

Why Bother?
The first question to consider is: why bother with MP? Sometimes there’s no need to
bother: your application is so straightforward that you need not concern yourself with
processes at all. But in many other cases it’s difficult to imagine how a sophisticated
application can be written without MP. How will you get it to respond to events in real
time? For example:

• your application is computationally intensive and you want to take advantage of
multiple CPUs;

• you might be writing a server which needs to be able to respond to more than one
user or connection at a time (for instance: a web server, as in Chapter 24);

• you might want to perform some background activity, without halting the main
application while this is going on (for example, in an interactive application you
might want to read the contents of a file without halting the user interface);

• you might want your application to be notified when a certain time interval has
elapsed;

• you might want to keep the application running and active while waiting for some
system resource to become available;

• you might need to interface with some other system which requires multi-threading
(for example, windows under Windows which generally run in their own threads);

• you might want to associate different contexts (e.g. different dynamic bindings)
with different parts of the application;

• you might even have the simple need to do two things at once.

2 | Chapter 15: Concurrency

http://www.cliki.net/thread
http://cl-cookbook.sourceforge.net/process.html

Copyright © Nick Levine (http://lisp-book.org/) 2009 - 2011. Some rights reserved.
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported License.
To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/3.0/ or send a letter
to Creative Commons, 444 Castro Street, Suite 900, Mountain View, California, 94041, USA.

Emergency Exits
It’s fairly likely when you’re working with processes that—every now and again—one
of them will run away from you and either fall motionless at your feet or make a CPU-
intensive break for freedom. If you’ve managed to get your Lisp tangled you may be
short on options for halting a runaway process, short of terminating the Lisp session
altogether. So before you go any further, you should learn how to kill processes in your
Lisp development environment. This is easiest if you’re working in an IDE.

• In ACL on Linux or Windows, select Processes from the View menu (or press Alt-
F9) and a processes dialog will open; to kill a process which won’t respond to polite
coercion select it and press the Delete button.

• In LW on any platform, it’s a similar story: Process Browser on the Tools menu or
(aptly enough) press the podium icon of somebody running away. Click the “skull
and crossbones” icon to kill the selected process.

In either case, open the dialog before you get into trouble.

Exercise
In the ACL IDE, type

(mp:process-run-function "foo" (lambda () (loop)))

into a listener and use the process dialog to kill the process.

If you aren’t in an IDE, let’s hope you can find (or fire up) a listener which isn’t totally
hosed and into which you can type your implementation’s equivalent of a process-
kill command (see “Basics” on page 4 below).

You might want to think about designing your application so that these
situations can be dealt with cleanly by the end user.

Let’s Get Going
We’ll use ACL for the examples.

Let’s Get Going | 3

Copyright © Nick Levine (http://lisp-book.org/) 2009 - 2011. Some rights reserved.
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported License.
To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/3.0/ or send a letter
to Creative Commons, 444 Castro Street, Suite 900, Mountain View, California, 94041, USA.

Getting Started
Typically, you don’t have to do anything to obtain, load or start up your Lisp’s MP
system: if you’re running the Lisp then you’re running MP with it. This isn’t always the
case (e.g. LW on Unix workstations). If you’re at all uncertain, read the manual for
your implementation and use whatever facility has been provided for starting MP in
your image.

In ACL, MP is started lazily the first time any process operation is in-
voked. If you’re using the IDE, this will happen long before you get to
the Lisp prompt.

Packages
ACL exports its MP utilities from the MULTIPROCESSING package, nicknamed MP. We’ll
assume here that you’re cl:useing this:

(use-package :mp)

Basics
The general idea is simple enough: pass a function to process-run-function and it’ll
run in its own process. (This may or may not be represented by a real thread at the OS
level.)

In the following example, you create a process called "Incrementing *foo*". The func-
tion foo is invoked (with no arguments) in that process.

(defvar *foo* 0)
(defun foo () (incf *foo*))

(process-run-function "Incrementing *foo*" 'foo)
 =>
#<PROCESS Incrementing *foo*(3) @ #x40689562>

foo
 =>
1

;; By the time you've typed this, the new process has almost certainly
;; terminated. Note that its printed representation has (subtly) changed.

**
 =>
#<PROCESS Incrementing *foo* @ #x40689562>

• The first argument to process-run-function is typically a string naming the process.
You don’t have to make the names unique, but it’s a smart move if you do so in
actual code, as it’s a great way to tell your processes apart when you’re debugging

4 | Chapter 15: Concurrency

Copyright © Nick Levine (http://lisp-book.org/) 2009 - 2011. Some rights reserved.
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported License.
To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/3.0/ or send a letter
to Creative Commons, 444 Castro Street, Suite 900, Mountain View, California, 94041, USA.

them. When playing around in the listener, you’ll often find no harm in using an
empty string here.

• Alternatively the first argument can be a list of process initialization keywords (one
of which is :name, so you haven’t lost anything if you use this form). See the doc-
umentation for make-process for details and “Per-process State” on page 6 below
for an example.

• The second argument is the function to invoke in the new process. This can be any
function designator, for example, an fboundp symbol or a lambda form.

• Any remaining arguments to process-run-function are passed to your function. So
calls to process-run-function look like calls to funcall with an additional argument
at the beginning.

• A call to process-run-function returns immediately (the return value is of type
process), while the new process executes in the background (asynchronously).

• You’ll find the process object on the list *all-processes*.

• When the process run-function (foo in the above) exits, the process itself no longer
has any work to do and is terminated and removed from *all-processes*.

To kill a process programmatically (typically: from another process), call process-
kill with that process as its sole argument. ACL causes the process to unwind (by
cl:throwing out of its execution stack) and then removes it from *all-processes*.

CL-USER(1): (process-kill
 (process-run-function "Don't forget to say goodbye"
 (lambda ()
 (unwind-protect
 (loop)
 (print "Goodbye"
 #.*standard-output*)))))
NIL
CL-USER(2):
"Goodbye"

The #. notation forces evaluation in the context of the Lisp reader and
so returns the value of *standard-output* for the listener process. See
“Where’s my output?” on page 8 below.

If you didn’t already have a handle on the process, use process-name-to-process. This
function has signature

(process-name-to-process name &key abbrev (error t))

If abbrev is set, then the string name only has to match the beginning of a process name
for that process to be returned. If error is true then failure to match the name to any
process will signal an error.

Let’s Get Going | 5

Copyright © Nick Levine (http://lisp-book.org/) 2009 - 2011. Some rights reserved.
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported License.
To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/3.0/ or send a letter
to Creative Commons, 444 Castro Street, Suite 900, Mountain View, California, 94041, USA.

Closures! Warning!
Note the difference between:

(let ((table (make-hash-table)))
 (loop for i from 1 to 20 do
 (process-run-function "One closure"
 (lambda () (setf (gethash i table) t))))
 table)

and:

(let ((table (make-hash-table)))
 (loop for i from 1 to 20 do
 (process-run-function "Twenty different bindings"
 (lambda (j) (setf (gethash j table) t))
 i))
 table)

Exercise
Run these forms in the REPL; they both return empty tables. When you
evaluate * the number of entries in each table jumps. Why is that?

In the first case, all twenty processes share the same closure variable i. The processes
execute asynchronously: there’s no way to tell exactly when or in what order they’ll
execute, or how they’ll interleave with the process which created them. In this case (try
it!) you will observe that all 20 processes are typically initialized before any of them
have a chance to start running. By far the easiest way of dealing with this is to ensure
that variables which need to be private to each process are bound on a per-process basis.

Exercise
Get two or three new processes running simultaneously, and convince
yourself they’re all there.

Per-process State
Every process in your Lisp system has its own private state. The following aspects of
state will vary between different processes:

• dynamic bindings of special variables;

• catch tags;

• condition handlers, unwind-protect, etc.

On the other hand, the following are globally set rather than bound in a Lisp system
and so will not vary between processes:

• definitions of functions, methods, classes, conditions, packages;

6 | Chapter 15: Concurrency

Copyright © Nick Levine (http://lisp-book.org/) 2009 - 2011. Some rights reserved.
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported License.
To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/3.0/ or send a letter
to Creative Commons, 444 Castro Street, Suite 900, Mountain View, California, 94041, USA.

• contents of any compound objects, such as cons cells, arrays, CLOS objects, hash
tables;

• values of closure variables;

• the state of any stream;

• symbol property-lists.

To see how per-process variable bindings can lead you astray, consider the following
examples:

CL-USER(1): (defvar *foo* nil)

FOO
CL-USER(2): (process-run-function "Global set *foo*"
 (lambda () (setf *foo* 1)))

#<PROCESS Global set *foo*(7) @ #x20eb96d2>
CL-USER(3): *foo*
1
CL-USER(4): (process-run-function
 "Bind in new process, invisible elsewhere."
 (lambda ()
 (let ((*foo* 2))
 (sleep 5) ; affects just this process
 (setf *foo* 3)
 (print *foo* #.*standard-output*))))
#<PROCESS Bind in new process, invisible elsewhere.(7) @ #x20ec651a>
CL-USER(5): *foo* ; during the 5 second sleep
1
CL-USER(6):
3

CL-USER(7): *foo*
1
CL-USER(8): (let ((*foo* 4))
 (process-run-function
 "Bind in old process, can't see elsewhere."
 (lambda () (print *foo* #.*standard-output*))))
#<PROCESS Bind in old process, can't see elsewhere.(7) @ #x20ed1802>
CL-USER(9):
1

In both lines 1 and 2, *foo* is set globally. This means that every process shares the
symbol’s value. In line 4, *foo* is bound only within the new process; the original
process (i.e. the listener) does not see either this binding or the result of a setf within
the binding. Similarly, in line 8 the binding is present only in the original process.

To create a binding which will be present at the beginning of a new process, specify
an :initial-bindings value:

CL-USER(10): (process-run-function '(:name "Bind around new process."

 ;; Note the "dotted list" format - an
 ;; unpleasant trap for the unwary.

Let’s Get Going | 7

Copyright © Nick Levine (http://lisp-book.org/) 2009 - 2011. Some rights reserved.
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported License.
To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/3.0/ or send a letter
to Creative Commons, 444 Castro Street, Suite 900, Mountain View, California, 94041, USA.

 :initial-bindings ((*foo* . 5))
)
 (lambda ()
 (print *foo* #.*standard-output*)))
#<PROCESS Bind around new process.(7) @ #x20fc5e52>
CL-USER(11):
5

CL-USER(12):

ACL also provides sys:global-symbol-value for reading or setting a
symbol’s global value (outside of any bindings) and symeval-in-proc
ess for accessing its bound value within a given process.

Exercise
Explain from examination of (process-initial-bindings *current-
process*) why calling in-package in one listener does not affect the
package in another.

Where’s my output?
An obvious way to test whether processes are behaving as you imagine they ought is
to get them to print messages to the listener. For example, you might feel justified in
trying something like:

CL-USER(12): (process-run-function "Where's my output?"
 (lambda () (print 99)))
#<PROCESS Where's my output?(7) @ #x20e7027a>
CL-USER(13):

Where indeed is your output? The answer is that your new process has a different
standard-output to the listener, and that’s where your output has gone to. Here is
how you might find out where precisely that is:

CL-USER(13): (process-run-function "Where indeed?"
 (lambda ()
 (print *standard-output*
 #.*standard-output*)))
#<PROCESS Where indeed?(7) @ #x20e820ea>
CL-USER(14):
#<TERMINAL-SIMPLE-STREAM [initial terminal io] fd 0/1 @ #x201184aa>

Exercise
(In the ACL Windows IDE) open the Windows console (i.e. *terminal-
io*) by evaluating (cg.base:show-console). Now you can prove directly
where process output goes (by sending something there).

8 | Chapter 15: Concurrency

Copyright © Nick Levine (http://lisp-book.org/) 2009 - 2011. Some rights reserved.
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported License.
To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/3.0/ or send a letter
to Creative Commons, 444 Castro Street, Suite 900, Mountain View, California, 94041, USA.

Exercise
The following behaves differently to the "Where indeed?" process above.
Why? What’s the significance of the “#.” in these two examples?

(process-run-function "Why not here?"
 'print
 standard-output
 #.*standard-output*)

Where’s my input?
An entirely more annoying situation occurs when two or more processes share the same
standard-input. This is can happen if you’re running Lisp from a Unix command
line. Consider this interaction (ACL on FreeBSD):

CL-USER(1): *current-process*
#<PROCESS Initial Lisp Listener(2) @ #x4052e332>
CL-USER(2): (process-run-function "foo" 'error "bar")
#<PROCESS foo(3) @ #x405f757a>
CL-USER(3):
Error: bar

Restart actions (select using :continue):
 0: Abort entirely from this (lisp) process.
[Current process: foo]
[1] CL-USER(1): *current-process*
#<PROCESS Initial Lisp Listener(2) @ #x4052e332>
CL-USER(4): *current-process*
#<PROCESS foo(3) @ #x405f757a>
[Current process: foo]
[1] CL-USER(2):

Two processes (the original Lisp listener and your own "foo") have the same *standard-
input*. The Lisp scheduler appears to be switching between them each time it generates
a prompt. (Things could be worse. Another Lisp in which I tried that out reliably
switched contexts part-way through reading lines of input from the prompt, which
made bailing out somewhat hit and miss.)

The best approach to this particular hazard is to avoid it altogether. If you’re compelled
to debug a multi-processing application at the command line, consider using SLIME
(Chapter 18).

Let’s Get Going | 9

Copyright © Nick Levine (http://lisp-book.org/) 2009 - 2011. Some rights reserved.
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported License.
To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/3.0/ or send a letter
to Creative Commons, 444 Castro Street, Suite 900, Mountain View, California, 94041, USA.

Interactions Between Processes

Waiting
In all the above examples, a process is created to run a simple function and then halt.
In a typical application at least some of your processes will run an event loop of some
sort. An event loop is a function which repeatedly waits for an event external to that
process to occur. When an event is noticed, it is dispatched (maybe to another process)
for processing and the event loop cycles back to its waiting state. The “other process”
here might already exist (perhaps running an event loop of its own) or might be created
specifically to perform this task (i.e. handle a single event) and then terminate.

It might be tempting to construct an event loop using cl:sleep. For example:

(defun bogus-event-loop ()
 (loop
 (sleep 1) ; THIS IS WRONG
 (when (something-has-happened)
 (act-on-that-thing))))

(process-run-function "Bogus event loop"
 'bogus-event-loop)

This is a poor choice, because you’re condemned to wait for the sleep to return before
you can perform the wake-up test. (Also, it’s conceivable that your implementation
cannot sleep one single process without sleeping the whole Lisp executable. In such
cases, any processing required before the predicate something-has-happened can return
true will never happen.)

Consider instead:

(defun improved-event-loop ()
 (loop
 (process-wait "Waiting for something to happen"
 'something-has-happened)
 (act-on-that-thing)))

The arguments to process-wait are a string (which you should use for describing what
this process is waiting for), a function and optionally arguments to that function. The
call to process-wait will not return until this wait-function returns true.

Keep the wait-function simple: don’t use it to perform expensive calcu-
lations and be wary of using it to mess with MP. In particular, don’t call
process-wait recursively (in ACL for example this causes the process to
hang).

10 | Chapter 15: Concurrency

Copyright © Nick Levine (http://lisp-book.org/) 2009 - 2011. Some rights reserved.
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported License.
To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/3.0/ or send a letter
to Creative Commons, 444 Castro Street, Suite 900, Mountain View, California, 94041, USA.

If you’re waiting for input on an external stream, the call (wait-for-
input-available stream) will ensure that your Lisp session notices the
input when it arrives.

Exercise
Read the ACL documentation on wait-for-input-available. (If you’re
using the IDE, type the symbol into a listener, select it and press the F1
key.)

There’s often a risk that the wait-function will never return true, meaning that the
waiting process might wait forever. If you don’t want that to happen, consider instead
using process-wait-with-timeout. This function has signature

(process-wait-with-timeout reason timeout wait-function &rest arguments)

where timeout can be any non-negative real number. If the wait-function succeeds be-
fore that number of seconds has passed, it returns true; otherwise it stops waiting and
returns nil. For example:

(defun check-wait-for-file (file timeout)
 (or (probe-file file)
 (process-wait-with-timeout (format nil "Waiting for \"~a\"" file)
 timeout
 'probe-file file)
 (error "File \"~a\" still not found" file)))

Wait-functions are run when the system attempts to switch into the
waiting processes. If there are several active processes, Lisp will switch
between them many times per second. How often that is depends on
implementation and OS platform: if you need to know your system’s
granularity, experiment!

Exercise
Adapt check-wait-for-file to count how many times the wait function
was called. This will give you a rough estimate of how often the sched-
uler switches between processes.

Related to process-wait-with-timeout is the macro with-timeout:

(with-timeout (seconds &rest timeout-forms) &body body)

The body is run as an implicit progn. If it takes longer than seconds to do this, execution
throws out and the timeout-forms are run, returning the result of the last form.

Interactions Between Processes | 11

Copyright © Nick Levine (http://lisp-book.org/) 2009 - 2011. Some rights reserved.
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported License.
To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/3.0/ or send a letter
to Creative Commons, 444 Castro Street, Suite 900, Mountain View, California, 94041, USA.

Data-driven Interrupts
An important mode of communication between processes is the interrupt: a message
sent by one process to another, to ask that process to perform some task. This might
come in handy if:

• you need certain actions to be performed synchronously, for example you need your
web server to flush some cache before it accepts any further connections; or

• you need actions to be performed in the dynamic context of another process (so
as to access its variable bindings, perhaps).

The safest approach is to use a message queue. One process “owns” the queue and other
processes can “post” tasks to it; the owning process deals with them one at a time when
it’s good and ready to do so.

ACL supports this paradigm with the class queue (a first in, first out data structure),
atomic operators enqueue and dequeue, and the predicate queue-empty-p. The accessor
process-property-list is also useful here.

;; Call (event-handler) to set up a handling process which processes events
;; from its queue, always completing one before going on to the next. Use
;; handle-in-process below to add events to the queue.

(defun event-handler ()
 (process-run-function "Event handler"
 'handle-events))

(defun handle-events ()
 (let ((queue (make-instance 'queue)))

 ;; Put the queue where client processes can find it

 (setf (getf (process-property-list *current-process*) 'queue)
 queue)

 (loop ;; Wait for a request to arrive (when one does the queue
 ;; will stop being empty)

 (process-wait "Waiting for request in queue"
 (lambda () (not (queue-empty-p queue))))

 ;; Now we know a request has arrived, peel it off the queue
 ;; and run it

 (let ((request (dequeue queue)))
 (funcall request)))))

(defun handle-in-process (process function &rest arguments)
 (let* ((queue (getf (process-property-list process) 'queue))
 (no-result (cons nil nil))
 (result no-result))

 ;; Send function to other process

12 | Chapter 15: Concurrency

Copyright © Nick Levine (http://lisp-book.org/) 2009 - 2011. Some rights reserved.
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported License.
To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/3.0/ or send a letter
to Creative Commons, 444 Castro Street, Suite 900, Mountain View, California, 94041, USA.

 (enqueue queue
 (lambda ()
 (setf result (apply function arguments))))

 ;; Wait for the value of RESULT to change, and then return it

 (process-wait (format nil "Waiting for response from ~a"
 (process-name process))
 (lambda () (not (eq result no-result))))
 result))

Exercise
What is interesting about the value of no-result?

LispWorks uses objects called mailboxes which support this queues at-
tached to processes. These are documented in the LW Reference Man-
ual.

Atomic Operators
When you’re working on a data structure you sometimes need to be certain that what-
ever you’re doing to it will be complete before any other process touches that data.
Such an operation is referred to as a critical section, or as being atomic.

You cannot assume that any operator is atomic unless your implementation’s docu-
mentation has explicitly told you that this is the case. Some implementations support
atomic versions of common operators, for example atomic-push; when they do that’s
a firm warning that the CL counterparts (in this case cl:push) are not thread-safe.

Exercise
What might happen if two different processes were to cl:push to the
same location at approximately the same time?

Concurrent Processes
Traditionally Lisp implements MP by emuluating multi-tasking. When it comes down
to it, only one task is being performed at a time. Forthcoming releases of both ACL and
LW will support symmetric multiprocessing: concurrent threads running in parallel on
multiple cores. This will allow for considerable performance gains but will have im-
plications for the enforcement of atomicity. Both implementations will introduce new
operators for controlling concurrency as well as a number of primitives for atomic read-
modify-write operations.

Interactions Between Processes | 13

Copyright © Nick Levine (http://lisp-book.org/) 2009 - 2011. Some rights reserved.
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported License.
To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/3.0/ or send a letter
to Creative Commons, 444 Castro Street, Suite 900, Mountain View, California, 94041, USA.

Some other implementations already provide symmetric MP, albeit with less sophisti-
cated controls. In all cases, you are strongly advised to read your documentation with
regard to concurrency. For ACL users an upgrade note is available here:

http://www.franz.com/support/documentation/current/doc/smp.htm

Locks
Sometimes it’s important to control access to a resource, so that only one process is
operating on it at a time. You could do this is by restricting access from your code to
that resource and only allowing one specialized process to touch it, using an event
handler to enforce this. However there are two potential drawbacks to this approach:

• frequently you’ll need to wait in the invoking process until the operation on the
resource is complete;

• this is becoming a somewhat heavyweight mechanism for handling what should
be a fairly simple operator.

A lock is a simple Lisp object, which can be held by no more than one process at a time.
A process attempting to hold a lock which is already in use will hang (i.e. be forced to
wait) until the lock is freed. In the following example, the locking mechanism is reduced
to its most minimal form.

;; Create a lock and remember it.

(defvar *lock* (make-process-lock))

(defun use-resource-when-free (stream)

 ;; Callers must wait at this point for the lock to be freed,
 ;; before they can proceed with the body of this form.

 (with-process-lock (*lock*)
 (use-resource-anyway stream)

 ;; When we exit this form, the lock is freed automatically
 ;; and other processes will be allowed to claim it.
))

(defun use-resource-anyway (stream)
 (let ((name (process-name *current-process*)))
 (format stream "~&Starting ~a." name)
 (sleep 1)
 (format stream "~&Ending ~a." name)))

(defun test (lock-p)
 (let ((run-function (if lock-p
 'use-resource-when-free
 'use-resource-anyway)))
 (dotimes (id 3)
 (process-run-function (format nil "process ~a" id)
 run-function *standard-output*))))

14 | Chapter 15: Concurrency

http://www.franz.com/support/documentation/current/doc/smp.htm

Copyright © Nick Levine (http://lisp-book.org/) 2009 - 2011. Some rights reserved.
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported License.
To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/3.0/ or send a letter
to Creative Commons, 444 Castro Street, Suite 900, Mountain View, California, 94041, USA.

Your implementation may also support other process-friendly struc-
tures, such as semaphores. Check your documentation.

Allegrocache
Recall that AllegroCache connections are not thread-safe: you should not allow two
processes to “use the same connection” at the same time. We’re now in a position to
consider potential solutions to this problem.

Exercise
One option is to use a lock to guard all unsafe operations. Implement
this, in part at least. You won’t want dozens of (with-lock ...) forms
scattered through your code. How will you address this?

Another option is to maintain a pool of several connections from which processes can
request a connection and to which they can be guaranteed to return it:

(defun process-run-with-connection (name-or-options function &rest args)
 (process-run-function name-or-options
 (lambda ()

 ;; Per-process binding of *allegrocache* keeps
 ;; the connection private

 (let* ((*allegrocache* (request-connection)))
 (unwind-protect
 (apply function args)
 (return-connection *allegrocache*))))))

;; Use of a QUEUE ensures atomicity (we don't want two processes picking
;; up the same connection)

(defvar *connections* (make-instance 'queue))

(defun request-connection ()
 (or (dequeue *connections*)
 (open-network-database ...)))

(defun return-connection (connection)
 (enqueue *connections* connection))

Exercise
Adapt this example to enforce an upper limit on the number of con-
nections.

Interactions Between Processes | 15

Copyright © Nick Levine (http://lisp-book.org/) 2009 - 2011. Some rights reserved.
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported License.
To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/3.0/ or send a letter
to Creative Commons, 444 Castro Street, Suite 900, Mountain View, California, 94041, USA.

Problems?
We should end this chapter with a word of caution. MP errors can be very hard to
debug. Your only symptom may be “unexplainable” data corruption or “illogical” pro-
gram flow. You may find the problem hard or impossible to reproduce, even though
you have incontrovertible proof of it happening once. Any of this should point you to
examine your MP usage. Pay attention to anecdotal evidence. I have in mind a race
condition whose outcome flipped after one of my users defragmented his hard drive
thus speeding up processes which accessed the disk. Ask yourself: “clearly this is im-
possible, but how could this have happened?”, “can I document the order on which I
depend upon things happening?”, “is anything else unexpected happening?”

16 | Chapter 15: Concurrency

